Eckart Viehweg And

نویسنده

  • KANG ZUO
چکیده

Example 0.1. Let f : X → P be a non-isotrivial semistable family of Abelian varieties of dimension g over the complex line, then: i. s = #{ singular fibres } ≥ 4. ii. s = 4 if and only if f is isogenous to E ×P1 E ×P1 · · · ×P1 E where E → P is one of the 6 modular families of elliptic curves, smooth over P \ {y1, . . . , y4} for some distinct points y1, . . . , y4 ∈ P (as described in [Beauville 82]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eckart Viehweg and Kang Zuo

Assume that the family f is not isotrivial, hence that for no finite covering Y ′ → Y one has a birational map X ×Y Y ′ → F × Y . If one assumes in addition that the smooth fibres F of f are minimal models, then for ν > 1 the left hand side of (1) is strictly larger than zero. If Y = P one sees that #S ≥ 3. Here we are interested in the case ν = 1, assuming that the non-isotriviality implies de...

متن کامل

Counterexamples to the Kawamata-Viehweg Vanishing on Ruled Surfaces in Positive Characteristic

We give counterexamples to the Kawamata-Viehweg vanishing theorem on ruled surfaces in positive characteristic, and prove that if there is a counterexample to the Kawamata-Viehweg vanishing theorem on a geometrically ruled surface f : X → C, then either C is a Tango curve or all of sections of f are ample.

متن کامل

Counterexamples of the Kawamata-Viehweg Vanishing on Ruled Surfaces in Positive Characteristic

We give a classification of the counterexamples of the Kawamata-Viehweg vanishing on a geometrically ruled surface in terms of the Tango invariant of the base curve.

متن کامل

Kawamata-Viehweg Vanishing on Rational Surfaces in Positive Characteristic

We prove that the Kawamata-Viehweg vanishing theorem holds on rational surfaces in positive characteristic by means of the lifting property to W2(k) of certain log pairs on smooth rational surfaces. As a corollary, the Kawamata-Viehweg vanishing theorem holds on log del Pezzo surfaces in positive characteristic.

متن کامل

Kawamata–viehweg Vanishing as Kodaira Vanishing for Stacks

We associate to a pair (X, D), consisting of a smooth variety with a divisor D ∈ Div(X) ⊗ Q whose support has only normal crossings, a canonical Deligne–Mumford stack over X on which D becomes integral. We then reinterpret the Kawamata–Viehweg vanishing theorem as Kodaira vanishing for stacks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005